Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Subsidiary Level
In Chemistry (WCH12)
Paper 01: Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number P64624A
Publications Code WCH12_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.
Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
1		1

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is D $\left(\Delta_{r} H\right)$	$\mathbf{1}$
	\boldsymbol{A} is incorrect because this is not an enthalpy of atomisation	
\boldsymbol{B} is incorrect because carbon monoxide is not the final combustion product of carbon		
C is incorrect because two moles of carbon monoxide are formed		

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is A (0.01) \boldsymbol{B} is incorrect because this is the average rate of reaction over 15 seconds C is incorrect because this is the average rate of reaction up to 8 seconds \boldsymbol{D} is incorrect because this is the concentration reading at 8 seconds	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{C}(\mathrm{Y}$ and W$)$	$\mathbf{1}$
\boldsymbol{A} is incorrect because the curve is for a lower temperature		
\boldsymbol{B} is incorrect because the curve is for a lower temperature and the E_{a} has increased		
\boldsymbol{D} is incorrect because the E_{a} has increased		

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is D (+6)	$\mathbf{1}$
	$\boldsymbol{A} \quad$ is incorrect because this does not consider the numbers of oxygen and sodium atoms in the compound	
$\mathbf{B} \quad$ is incorrect because this is the number of chromium atoms in the compound		
C is incorrect because this does not consider the oxidation numbers of sodium and oxygen		

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is $\mathbf{C}\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ \boldsymbol{A} is incorrect because the oxidation number of nitrogen is +1 \boldsymbol{B} is incorrect because the oxidation number of nitrogen averages +3 \boldsymbol{D} is incorrect because the oxidation number of nitrogen is +5	$\mathbf{1}$

Question Number	Answer	Mark		
$\mathbf{7}$	The only correct answer is D (Hydrogen unchanged, Oxygen oxidised and reduced)	$\mathbf{1}$		
\boldsymbol{A} is incorrect because hydrogen is unchanged and oxygen is both oxidised and reduced				
\boldsymbol{B} is incorrect because hydrogen is unchanged and oxygen is both oxidised and reduced				
\boldsymbol{C} is incorrect because hydrogen is unchanged and oxygen is both oxidised and reduced			\quad	
:---				

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is B (II and III) \boldsymbol{A} is incorrect because number of protons increasing is not a reason for decreasing ionisation energy down the group	$\mathbf{1}$
C is incorrect because electrons being unpaired is not a reason for decreasing ionisation energy down the group \boldsymbol{D} is incorrect because statements I and IV are not reasons for decreasing ionisation energy down the group		

Question Number	Answer	Mark
$\mathbf{9 (a)}$	The only correct answer is $\mathbf{A}\left(\mathrm{CH}_{3} \mathrm{CHICH}_{3}\right)$ \boldsymbol{B} is incorrect because the rate of reaction increases as the carbon-halogen bond strength decreases C is incorrect because the rate of reaction increases as the carbon-halogen bond strength decreases \boldsymbol{D} is incorrect because the rate of reaction increases as the carbon-halogen bond strength decreases	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{9 (b)}$	The only correct answer is B $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CBr}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right)$	$\mathbf{1}$
	A is incorrect because secondary halogenoalkanes take longer to hydrolyse than tertiary	
C is incorrect because primary halogenoalkanes take longer to hydrolyse than tertiary		
D is incorrect because primary halogenoalkanes take longer to hydrolyse than tertiary		

Question Number	Answer	Mark
10	The only correct answer is A (\boldsymbol{B} is incorrect because the bromine and chlorine are on the wrong carbon atoms C is incorrect because there is an additional methyl group	1

Question Number	Answer	Mark
11	The only correct answer is C (\boldsymbol{A} is incorrect because this is a secondary haloalkane B is incorrect because this is a tertiary haloalkane D is incorrect because this is a secondary haloalkane	1

Question	Answer	Mark			
Number					
$\mathbf{1 2}$	The only correct answer is C				
	\boldsymbol{A} is incorrect because this shows no absorbance for the $C=C$ stretch				
\boldsymbol{B} is incorrect because this shows no absorbance for the O-H stretch or $C=C$ stretch					
\boldsymbol{D} is incorrect because this shows no absorbance for the O-H stretch				\quad	
:---					

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is $\mathbf{B}\left(\mathrm{CH}_{3} \mathrm{CO}^{+}\right)$ \boldsymbol{A} is incorrect because the fragment is not present in propanone \boldsymbol{C} is incorrect because the fragment is not present in propanone \boldsymbol{D} is incorrect because the fragment is not present in propanone	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathbf{D}\left(136.9 \mathrm{~cm}^{3}\right)$ \boldsymbol{A} is incorrect because this is the volume of acid required \boldsymbol{B} is incorrect because this is the number of moles of acid multiplied by 1000 Cis incorrect because this is 150 - (the number of moles of acid multiplied by 1000$)$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is $\mathbf{B}(5)$ A is incorrect because this is the rounded number of grams of NaOH needed C is incorrect because this is the mass of a pellet divided by the moles of NaOH \boldsymbol{D} is incorrect because this is the moles of NaOH multiplied by 1000 and divided by 0.7	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is $\mathbf{A}(0.0031 \mathrm{~mol})$ B is incorrect because this is the moles of sodium hydroxide C is incorrect because the number of moles of NaOH has been doubled instead of halved \boldsymbol{D} is incorrect because this calculation has ignored the sample of $25.0 \mathrm{~cm}^{3}$	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 5 (c)}$	The only correct answer is \mathbf{B} (pink \rightarrow colourless) \boldsymbol{A} is incorrect because the indicator would start pink in sodium hydroxide	$\mathbf{1}$
\boldsymbol{C} is incorrect because this is the opposite colour change for methyl orange indicator		
\boldsymbol{D} is incorrect because this is the colour change for methyl orange indicator		

Question Number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is C (AgCl and AgBr$)$	$\mathbf{1}$
	\boldsymbol{A} is incorrect because AgBr will be soluble but not AgI	
B is incorrect because AgCl will be soluble but not AgI		
\boldsymbol{D} is incorrect because AgBr will also be soluble		

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 7} & \text { The only correct answer is } \mathbf{C}\left(5.22 \mathrm{dm}^{3}\right) & \mathbf{1} \\ & \boldsymbol{A} \text { is incorrect because this is the number of moles of hydrogen } \\ \boldsymbol{B} \text { is incorrect because this is the number of moles of lithium } \\ \boldsymbol{D} \text { is incorrect because this is the number of moles of lithium multiplied by the molar volume }\end{array}\right]$

Total for Section A = 20 marks

Section B

Question Number	Answer	Additional Guidance	Mark
18(a)	- identification of suitable reagent(s)	50\% / concentrated and sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ and potassium bromide / KBr Allow Other named bromides Phosphorus and bromine Phosphorus(V) bromide / PBr_{5} Phosphorus(III) bromide / PBr_{3} Thionyl bromide / SOBr_{2} If the name and the formula are given, then both must be correct Do not award dilute sulfuric acid	1

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 8 (b) (i)}$	\bullet conditions	Ethanolic / alcoholic (solution) Allow ethanol / alcohol Ignore heat / solid / reflux	$\mathbf{1}$
		Do not award aqueous solution	

Question Number	Answer	Additional Guidance	Mark
18(b)(ii)	- $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$	Allow elements in any order Ignore $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$	1

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 8 (b) (i i i) ~}$	\bullet nucleophilic	(1)	Allow nucleophile for nucleophilic
		(1)	Mabstitution List principle applies (further incorrect answers will each lose a mark) Allow phonetic spelling

Question Number	Answer	Additional Guidance	Mark
18(b)(iv)	- dipole and arrow from C-Br bond to $\mathrm{Br}^{\delta-}$ or just beyond - arrow from ammonia to $\mathrm{C}^{\delta+}$ and 1 or 2 correct curly arrows on intermediate (each from bond or lone pair to atom) - intermediate with charge - ammonium / H^{+}and bromide ion OR HBr OR $\mathrm{NH}_{4} \mathrm{Br}$	 Accept bromide and H^{+}/ammonium ions shown anywhere on answer (i.e. they don't have to be with intermediate and final product respectively) Allow $3^{\text {rd }}$ arrow for M2 to be from bromide lone pair to the hydrogen atom Negative charge on ammonia should be penalised once only Accept correct SN2 mechanism for 4 marks	4

Question Number	Answer		Additional Guidance	Mark
19(a)	An answer that makes reference to the following points: - correct balanced equation - correct state symbols	(1) (1)	Example of equation: $\begin{aligned} & \mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\ & \mathrm{OR} \\ & \mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \end{aligned}$ M2 dependent on M1 or near miss (e.g. missing 2 on $2 \mathrm{H}^{+}$)	2

Question Number	Answer		Additional Guidance	Mark
19(b)	An answer that makes reference to the following points: - moles calculated correctly for magnesium - moles calculated correctly for acid - justification of both the reacted moles being the smaller value as a 1:1 stoichiometry (and Mg being in excess)	(1) (1) (1)	Example answer: $0.5 \div 24.3=0.020576 \text { moles of } \mathrm{Mg}$ Allow use of 24 for 24.3 gives 0.020833 Allow 0.020 Do not award 0.02 $0.2 \times(25 \div 1000)=0.005$ moles of acid 0.005 moles of each react as it is a $1: 1$ relationship (This can be shown in working/text, but must not be contradicted in final answer) Ignore any further workings $\text { e.g. } 0.005+0.005=0.01$ TE from equation for stoichiometry	3

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	An answer that makes reference to the following points: - suitable choice of scale so that the points cover at least 50\% of the grid in both directions and allow for extrapolation AND correct choice of axes suitably labelled including units - all points plotted correctly	Example of graph: Allow units in brackets e.g. (min) instead of "/ min" NB Lines do not have to be present for 19(c)(i) Ignore scale breaks between 0 and 20/22 on the y-axis that allow for M1 and M2 to be scored	2

Question Number	Answer		Additional Guidance	Mark
19(c)(ii)	An answer that makes reference to the following points: - two straight lines of best fit with the cooling curve extrapolated back to 2 minutes - calculation of temperature change from the graph at 2 minutes	(1) (1)	Example of calculation: Ignore points 2, 3 and 4 being joined by a line $43.5-22.0=21.5\left({ }^{\circ} \mathrm{C}\right)$ TE from the graph in 19(c)(i)	2

Question Number	Answer		Additional Guidance	Mark
19(d)	An answer that makes reference to the following points: - recall of equation - substitution of correct values - conversion to molar quantity - correct sign and units	(1) (1) (1) (1)	Example calculation: $\begin{aligned} & \Delta H=(-) m c \Delta T \\ & \Delta H=25 \times 4.18 \times 21.5=2246.75(\mathrm{~J}) \\ & \Delta H \div 0.005=(-) 449350\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) /(-) 449\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & -449350 \mathrm{~J} \mathrm{~mol}^{-1} /-449 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ TE throughout and from 19(c)(ii) and 19(a) [-413.8 $\mathrm{k} \mathrm{mol}^{-1}$ scores 4 if 19.8 used as ΔT] If mass of 25.5 g is used, then the answer will be $-458337 \mathrm{~J} \mathrm{~mol}^{-1} /-458 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for 3 marks Ignore SF except 1SF Ignore rounding Correct answer with sign and units scores (4)	4

		Additional Guidance	Mark

Indicative content:

- IP1: fluorine molecules only have London forces (instantaneous dipole-induced dipole) between them (as it has a symmetrical electron cloud/is a symmetrical/non-polar molecule.)
- IP2: hydrogen chloride is a polar molecule as chlorine is more electronegative than hydrogen.
- IP3: HCl forms permanent dipole-permanent dipole interactions in addition to London forces.
- IP4: methanol contains a hydrogen attached to a small electronegative element so can form hydrogen bonds (in addition to permanent dipole-permanent dipole interactions and London Forces).
- IP5: hydrogen bonds are the strongest intermolecular forces so take the most energy to break.
- IP6: London forces are the weakest intermolecular forces, so fluorine has the lowest boiling temperature.

Allow dispersion forces / van der Waals forces Allow no dipole-dipole forces in place of "only"

Allow H and Cl have different electronegativities

Allow just "permanent dipole interactions"

Allow oxygen in place of the small electronegative element

Energy and boiling temperature need only be referenced once each in relation to H -bonds and/or London forces in order to gain IP5 and IP6

Allow reverse arguments for IP5 and IP6
Ignore references to shapes, sizes and surface areas

Question Number	Answer	Additional Guidance	Mark
20(b)	An answer that makes reference to the following points: - the oxygen is closest to the calcium ion - the hydrogen is closest to the chloride ion	(A minimum of two water molecules should be drawn for each ion - penalise once only) E.g. Allow displayed formula of water Allow diagrams without dotted lines Allow only one hydrogen of each water molecule closest to the chloride e.g. A singular water molecule correctly orientated between the ions scores 1 Dipoles are not required but if shown they must be correct Incorrectly labelled dipoles as charges should be penalised once, whether on water (or conversely on ions) Do not award $\mathrm{O}_{2} \mathrm{H}$, but if molecules are unshaded assume they are $\mathrm{H}_{2} \mathrm{O}$	2

Question Number	Answer	Additional Guidance	Mark
20(c)	An answer that makes reference to the following points: - Iodine has more electrons (per molecule) (than bromine) - so stronger London forces between molecules / I_{2} (mean a higher melting temperature for iodine)	Accept reverse arguments. If numbers of electrons are given they must be correct for molecules, not the atoms. Accept stronger van der Waals/induced dipoleinduced dipole forces / dispersion forces Do not award between atoms Allow "between iodine"	2

(Total for Question 20 = 10 marks)

Question Number	Answer		Additional Guidance	Mark
21 (a)			Example of a calculation:	4
	- calculation of mass of oxalate remaining	(1)	$6.0 \times 0.3=\mathbf{1 . 8}(\mathrm{g})$ will remain as oxalate	
	- 4.2 g will decompose to carbonate	(1)	$6.0-1.8=4.2(\mathrm{~g})$ will decompose	
	- M_{r} of oxalate and carbonate used to give mass of carbonate	(1)	$(4.2 \div 112.3) \times 84.3=3.15(\mathrm{~g})$	
	- final answer	(1)	$3.15+1.8=4.95$ (g)	
	Alternative method 1: - calculate moles of oxalate	(1)	$6.0 \div 112.3=0.0534(\mathrm{~mol})$	
	- calculate 70%	(1)	$0.7 \times 0.0534=\mathbf{0 . 0 3 7 4}(\mathrm{mol})$	
	- calculation of M_{r} of CO and mass lost	(1)	$28 \times 0.0373=1.047(\mathrm{~g})$	
	- subtract from original mass	(1)	6.0-1.047 = 4.95(3) (g)	
	Alternative method 2: - calculate mass that has decomposed	(1)	$6.0 \times 0.7=4.2$ (g)	
	- calculate moles that have decomposed	(1)	$(4.2 \div 112.3)=\mathbf{0 . 0 3 7 4}(\mathrm{mol})$	
	- calculate mass of carbonate	(1)	$0.0374 \times 84.3=3.15$ (g)	
	- addition of remaining solid	(1)	$3.15+(6-4.2)=4.95(\mathrm{~g})$	

		Alternative method 3: - M_{r} of CO and oxalate - calculation of mass of CO - 70\% of mass of CO - subtraction of mass of CO	(1) (1) (1) (1)	$\begin{aligned} & 28 \text { and } 112.3 \\ & 6.0 \times(28 \div 112.3)=\mathbf{1 . 4 9 6}(\mathrm{g}) \\ & 1.496 \times 0.7=\mathbf{1 . 0 4 7}(\mathrm{g}) \\ & 6.0-1.047=\mathbf{4 . 9 5}(3)(\mathrm{g}) \end{aligned}$ Ignore SF Correct answer scores 4	

Question Number	Answer	Additional Guidance	Mark
21 (b)	An answer that makes reference to the following points: - the temperature of decomposition of carbonates / stability increases down the group - (this is because) the size of the cation increases but has the same charge - so is less polarising (of the C-O bond)	Accept reverse arguments Allow charge density decreases (down the group) The trend down the group must be mentioned for all 3 marks to be awarded	3

Question Number	Answer	Additional Guidance	
$\mathbf{2 1}$ (c)	An answer that makes reference to the following points: \bullet the magnesium carbonate may begin to decompose (before the oxalate decomposition is complete).	Allow the sample would be contaminated with magnesium oxide	$\mathbf{1}$

Section C

Question Number	Answer	Additional Guidance	Mark
22(a)	An answer that makes reference to the following points: A diagram that includes: - carbon singly covalently bonded to two chlorine atoms and three lone pairs on each chlorine - carbon doubly bonded to an oxygen atom and two lone pairs on the oxygen	Penalise lack of lone pairs once only Allow any representation of electrons Allow individual electrons spread out, rather than in pairs Allow horizontal shared pairs of electrons Ignore lines representing covalent bonds	2

Question Number	Answer	Additional Guidance	Mark
22(b)(i)	An explanation that makes reference to the following points: Any two pairs from the three: - decrease the temperature - as the (forward) reaction is exothermic - increase the pressure - as there a fewer moles of (gas) on the product side EITHER - remove the phosgene (as it is formed) - to reduce the concentration of product (so equilibrium moves to the right) OR - add more CO / Cl2 - to increase the concentration of the reactants (so equilibrium moves to the right)	Ignore references to rate of reaction Allow $\mathrm{T} \downarrow$ Allow "favours the exothermic reaction" Allow P个 if numbers are quoted, they must be $2: 1$ Allow "favours the side with fewer moles"	4

Question Number	Answer	Additional Guidance	Mark
22 (b)(ii)	An answer that makes reference to the following points: - correct species - correct state symbols - correct arrows - calculation of value	Example of an answer: $\begin{aligned} \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO} & =-220.1-(-107.6) \\ & =-112.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Accept state symbol for C(s, graphite) Ignore absence of arrow and value to chlorine Numbers are not required on the cycle	4

Question Number	Answer	Additional Guidance	Mark
22(c)(i)	An explanation that makes reference to the following points: - chlorine isotopes (35 and 37) are in the ratio of $3: 1$ - (as there are) two chlorine atoms give the ratio of 9:6:1 (1)	Accept ${ }^{37} \mathrm{Cl} 75 \%$: ${ }^{35} \mathrm{Cl} 25 \%$ Allow this shown in workings e.g. $\mathrm{CO}^{37} \mathrm{Cl}^{177} \mathrm{Cl}^{(+)}=$ $102, \mathrm{CO}^{35} \mathrm{Cl}^{37} \mathrm{Cl}^{(+)}=100, \mathrm{CO}^{35} \mathrm{Cl}^{35} \mathrm{Cl}^{(+)}=98$ Do not award ${ }^{36} \mathrm{Cl}$ Mark independently Reference to isotopes of carbon should be penalised once	2

Question Number	Answer	Additional Guidance	
22(c)(ii)	An answer that makes reference to the following point	Allow the + on any of the atoms	
	$\bullet \mathrm{CO}^{35} \mathrm{Cl}^{+}$	Ignore brackets	

Question Number	Answer	Additional Guidance	Mark
22(c)(iii)	An answer that makes reference to the following point - peak drawn at 65 with relative intensity of 33.3	Example of completed graph: Allow a peak height between 30-35	1

Question Number	Answer	Additional Guidance	Mark
22 (d)	An answer that makes reference to the following points: - $1795\left(\mathrm{~cm}^{-1}\right)$ - (from the) $\mathrm{C}=\mathrm{O}$ (stretching vibrations)	Allow a number or range within 1630-1850 $\left(\mathrm{cm}^{-1}\right)$ M2 is dependent on M1 Allow a number or range within $550-850\left(\mathrm{~cm}^{-1}\right)$ and $\mathrm{C}-\mathrm{Cl}$ (stretching vibrations) for 2 marks Ignore acyl chloride Do not award M2 for aldehydes/ketones	1

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| 22(e)(i) | An answer that makes reference to the following point: | |
| | • balanced equation | Accept multiples of the equation |

Question Number	Answer	Additional Guidance	Mark
22(e)(ii)	An answer that makes reference to the following point: - oxygen concentration will decrease	Allow oxygen used up Allow $\left[\mathrm{O}_{2}\right.$] decreases Allow volume of oxygen decreases Do not award "air is used up" "Reactants are used up" is insufficient as doesn't apply information from the question Comments about trichloromethane decreasing negate the oxygen mark	1

| Question
 Number | Answer | Additional Guidance |
| :---: | :---: | :---: | :---: |
| 22(e)(iii) | An answer that makes reference to the following point | Mark |
| | • use a fume cupboard (due to toxic and irritant gases) | Allow open in a well-ventilated laboratory /
 open outside / wear a gas mask |
| Ignore eye protection / laboratory coats / gloves | | |
| Ignore just "mask" and "do not inhale" | | |
| Do not award face shield | | |

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 2 (e) (i v) ~}$	An answer that makes reference to the following points: - no, because some of the $\mathrm{HCl} / \mathrm{COCl}_{2}$ may have dissolved into the chloroform / be trapped as bubbles in the liquid	Allow may have reacted (with oxygen) to give (toxic) phosgene $/ \mathrm{COCl}_{2}$	$\mathbf{1}$

(Total for Question $22=20$ marks)
Total for Section C = 20 marks
Total for Paper $\mathbf{= 8 0}$ marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

